The Equivalents of Axiom of Choice

1. Axiom of Choice. The Cartesian product of a nonempty family of nonempty sets is nonempty.
2. Choice Function for Subsets. Let X be a nonempty set. Then for each nonempty subset $S \subseteq X$ it is possible to choose some element $s \in S$. That is, there exists a function f which assigns to each nonempty set $S \subseteq X$ some representative element $f(S) \in S$.
3. Set of Representatives. Let $\left\{X_{\lambda}: \lambda \in \Lambda\right\}$ be a nonempty set of nonempty sets which are pairwise disjoint. Then there exists a set C containing exactly one element from each X_{λ}.
4. Nonempty Products. If $\left\{X_{\lambda}: \lambda \in \Lambda\right\}$ is a nonempty set of nonempty sets, then the Cartesian product $\prod_{\lambda \in \Lambda} X_{\lambda}$ is nonempty. That is, there exists a function $f: \Lambda \rightarrow \bigcup_{\lambda \in \Lambda} X_{\lambda}$ satisfying $f(\lambda) \in X_{\lambda}$ for each λ.
5. Well-Ordering Principle (Zermelo). Every set can be well ordered.
6. Finite Character Principle (Tukey, Teichmuller). Let X be a set, and let F be a collection of subsets of X. Suppose that F has finite character (i.e., a set is a member of F if and only if each finite subset of that set is a member of F). Then any member of F is a subset of some \subseteq-maximal member of F.
7. Maximal Chain Principle (Hausdorff). Let (X, \preceq) be a partially ordered set. Then any \preceq-chain in X is included in a \subseteq-maximal \preceq-chain.
8. Zorn's Lemma (Hausdorff, Kuratowski, Zorn, others). Let (X, \preceq) be a partially ordered set. Assume every \preceq-chain in X has a \preceq-upper bound in X. Then X has a \preceq-maximal element.
9. Weakened Zorn's Lemma. Let (X, \preceq) be a partially ordered set. Assume every subset of X that is directed by \preceq has a \preceq-upper bound in X. Then X has a \preceq-maximal element.
10. Well-Ordering of Cardinals. Comparison of cardinalities is a well ordering. That is: If \sum is a set whose elements are sets, then there is some $S_{0} \in \sum$ which satisfies $S_{0} \in|T|$ for all $T \in \Sigma$.
11. Trichotomy of Cardinals. Comparison of cardinalities is a chain ordering. That is, for any two sets S and T, precisely one of these three conditions holds: $|S|<|T| ;|S|=|T| ;|S|>|T|$.
12. Comparability of Hartogs Number. Let $H(S)$ is the Hartogs number of a set S-i.e., the first ordinal that does not have cardinality less than or equal to $|S|$. Then $|H(S)|$ and $|S|$ are comparable -i.e., one is bigger than or equal to the other (and hence $|H(S)|>|S|$).
13. Squaring of Cardinals. If X is an infinite set then $|X \times X|=|X|$.
14. Multiplication of Cardinals. If X is an infinite set, Y is a nonempty set, and $|X| \geq|Y|$, then $|X \cup Y|=|X|$.
15. Another cardinality result. If X and Y are disjoint sets, $|X|>|\mathbb{N}|$, and Y is nonempty, then $|X \cup Y|=|X \times Y|$.
16. Another cardinality result. If X is an infinite set, then the cardinality of X is equal to the cardinality of $\bigcup_{n=1}^{\infty} X^{n}=\{$ finite sequences in $X\}$.
17. Vector Basis Theorem (Strong Form). Let X be a linear space over some field. Suppose that I is a linearly independent subset of X, G is generating set (that is, $\operatorname{span}(G)=X$), and $I \subseteq G$. Then $I \subseteq B \subseteq G$ for some vector basis B.
18. Vector Basis Theorem (Intermediate Form). Let X be a linear space over some field and let G be a subset of X which generates X (that is, $\operatorname{span}(G)=X$). Then X has a vector basis B contained in G.
19. Vector Basis Theorem (Weak Form). Any linear space over any field has a vector basis over that field.
20. Product of Closures. For each λ in some index set Λ, let S_{λ} be a subset of some topological space X_{λ}. Then $\mathrm{Cl}\left(\prod_{\lambda \in \Lambda} s_{\lambda}\right)=\left(\prod_{\lambda \in \Lambda} \mathrm{Cl}\left(S_{\lambda}\right)\right)$.
21. Product of Closures (Weak Form). $\quad \mathrm{Cl}\left(\prod_{\lambda \in \Lambda} S_{\lambda}\right) \supseteq\left(\prod_{\lambda \in \Lambda} \mathrm{Cl}\left(S_{\lambda}\right)\right.$).
22. Tychonoff Product Theorem. Any product of compact topological spaces is compact.

Reference:

1. Schechter Eric, "Handbook of Analysis and Its Foundations", Academic Press, San Diego, c1997.
