The Equivalents of Axiom of Choice

- 1. **Axiom of Choice.** The Cartesian product of a nonempty family of nonempty sets is nonempty.
- 2. Choice Function for Subsets. Let X be a nonempty set. Then for each nonempty subset $S \subseteq X$ it is possible to choose some element $s \in S$. That is, there exists a function f which assigns to each nonempty set $S \subseteq X$ some representative element $f(S) \in S$.
- 3. Set of Representatives. Let $\{X_I : I \in L\}$ be a nonempty set of nonempty sets which are pairwise disjoint. Then there exists a set *C* containing exactly one element from each X_I .
- 4. Nonempty Products. If $\{X_I : I \in L\}$ is a nonempty set of nonempty sets, then the Cartesian product $\prod_{l \in L} X_l$ is nonempty. That is, there exists a function $f : L \to \bigcup_{l \in L} X_l$ satisfying $f(l) \in X_l$ for each l.
- 5. Well-Ordering Principle (Zermelo). Every set can be well ordered.
- 6. Finite Character Principle (Tukey, Teichmuller). Let X be a set, and let F be a collection of subsets of X. Suppose that F has finite character (i.e., a set is a member of F if and only if each finite subset of that set is a member of F). Then any member of F is a subset of some \subseteq -maximal member of F.
- 7. **Maximal Chain Principle (Hausdorff).** Let (X, \preceq) be a partially ordered set. Then any \preceq -chain in X is included in a \subseteq -maximal \preceq -chain.
- 8. Zorn's Lemma (Hausdorff, Kuratowski, Zorn, others). Let (X, \preceq) be a partially ordered set. Assume every \preceq -chain in X has a \preceq -upper bound in X. Then X has a \preceq -maximal element.
- 9. Weakened Zorn's Lemma. Let (X, \preceq) be a partially ordered set. Assume every subset of X that is directed by \preceq has a \preceq -upper bound in X. Then X has a \preceq -maximal element.
- 10. Well-Ordering of Cardinals. Comparison of cardinalities is a well ordering. That is: If Σ is a set whose elements are sets, then there is some $S_0 \in \Sigma$ which satisfies $S_0 \in |T|$ for all $T \in \Sigma$.

- 11. **Trichotomy of Cardinals.** Comparison of cardinalities is a chain ordering. That is, for any two sets *S* and *T*, precisely one of these three conditions holds: |S| < |T|; |S| = |T|; |S| > |T|.
- 12. **Comparability of Hartogs Number.** Let H(S) is the Hartogs number of a set S —i.e., the first ordinal that does not have cardinality less than or equal to |S|. Then |H(S)| and |S| are comparable —i.e., one is bigger than or equal to the other (and hence |H(S)| > |S|).
- 13. Squaring of Cardinals. If X is an infinite set then $|X \times X| = |X|$.
- 14. **Multiplication of Cardinals.** If X is an infinite set, Y is a nonempty set, and $|X| \ge |Y|$, then $|X \cup Y| = |X|$.
- 15. Another cardinality result. If X and Y are disjoint sets, |X| > |N|, and Y is nonempty, then $|X \cup Y| = |X \times Y|$.
- 16. Another cardinality result. If X is an infinite set, then the cardinality of X is equal to the cardinality of $\bigcup_{n=1}^{\infty} X^n = \{\text{finite sequences in } X\}.$
- 17. Vector Basis Theorem (Strong Form). Let X be a linear space over some field. Suppose that I is a linearly independent subset of X, G is generating set (that is, span(G) = X), and $I \subseteq G$. Then $I \subseteq B \subseteq G$ for some vector basis B.
- 18. Vector Basis Theorem (Intermediate Form). Let X be a linear space over some field and let G be a subset of X which generates X (that is, span(G) = X). Then X has a vector basis B contained in G.
- 19. Vector Basis Theorem (Weak Form). Any linear space over any field has a vector basis over that field.
- 20. **Product of Closures.** For each I in some index set L, let S_I be a subset of some topological space X_I . Then $\operatorname{Cl}\left(\prod_{I \in L} S_I\right) = \left(\prod_{I \in L} \operatorname{Cl}(S_I)\right)$
- 21. Product of Closures (Weak Form). Cl

$$(I \in L) \quad (I \in L)$$
$$Cl\left(\prod_{I \in L} S_{I}\right) \supseteq \left(\prod_{I \in L} Cl(S_{I})\right)$$

22. **Tychonoff Product Theorem.** Any product of compact topological spaces is compact.

Reference:

1. Schechter Eric, "Handbook of Analysis and Its Foundations", Academic Press, San Diego, c1997.